1-8 of 8 results

  • Gravitation

    PI Quentin Bailey

    CO-I Andri Gretarsson

    CO-I Brennan Hughey

    CO-I Michele Zanolin

    CO-I Preston Jones

    Einstein’s theory of General Relativity offers a remarkable description of gravity as curved space and time. Many of the consequences of this theory have been confirmed, and some are used daily, such as the gravitational redshift effect on GPS satellite atomic clocks. In 2015, the first observation of a gravitational wave from two inspiraling black holes occurred using the gravitational wave observatories as part of the worldwide LIGO-VIRGO collaboration. This discovery won the Nobel prize, and the observations of these events have continued, including a multi-messenger event of two colliding neutron stars.


    Read more

    Categories: Faculty-Staff

  • Identifying Cost-Effective Security Barrier Technologies for K-12 Schools: An Interdisciplinary Evaluation

    PI Thomas Foley

    CO-I Reginald Parker

    CO-I Michele Gazica

    CO-I Brooke Shannon

    CO-I Erin Bowen

    CO-I Muna Slewa

    CO-I Michael Brady

    CO-I Richard Rodriguez

    CO-I Perry Feder

    This study proposes to test and collect data on the effectiveness of commonly used physical security systems in delaying intruders. The purpose of this study is to support the design of better physical security systems for schools. The study will also gather data on parent and teacher perceptions of the quality of security in schools.
    Read more

    Tags: prescott campus college of security and intelligence college of arts and sciences college of engineering

    Categories: Faculty-Staff

  • Matrix Analysis and Operator Theory

    PI Edward Poon

    Matrices and operators are ubiquitous throughout science, engineering, and mathematics; they are the transformations that arise whenever one studies a linear system (or approximates a nonlinear system by a linear one). Examples include rotations and reflections (rigid motions of space), spin operators (quantum mechanics and quantum computing), stress tensors (mechanics), regression and curve fitting (statistics and data analysis), derivatives and linear differential operators (dynamical systems), to name just a few.  By studying various properties, relations, and transformations of matrices and operators one may obtain insight into a wide range of phenomena.
    Read more

    Tags: college of arts and sciences mathematics prescott campus

    Categories: Faculty-Staff

  • Astronomy

    PI Pragati Pradhan

    CO-I Brian Rachford

    CO-I Noel Richardson

    Astronomy is one of the oldest sciences, as people have been observing and learning from the stars for thousands of years. Astronomy has expanded beyond visible light to include the full spectrum of electromagnetic waves, from radio to x-rays and gamma rays, as well as cosmic messengers beyond the electromagnetic spectrum.
    Read more

    Tags: physics prescott campus college of arts and sciences

    Categories: Faculty-Staff

  • Astroparticle Physics

    PI Darrel Smith

    CO-I Brennan Hughey

    In the 1950s and 1960s, high-energy and cosmic-ray physics developed into two different fields of research. However, in the last 20 years, they have come together in a most peculiar way. As space physicists explored the sources and mechanisms for producing cosmic rays, they also realized that it was impossible to measure the dynamics of the early universe (i.e., the first 400,000 years).
    Read more

    Tags: college of arts and sciences physics prescott campus

    Categories: Faculty-Staff

  • Exotic Propulsion

    PI Darrel Smith

    Exotic propulsion has captured the interest of many Embry-Riddle students. As NASA plans its manned mission to Mars, we come face-to-face with a fundamental dilemma — a round trip to Mars will take almost three years with traditional chemical rockets!
    Read more

    Tags: college of arts and sciences physics prescott campus

    Categories: Faculty-Staff

  • Analyticity and kernel stabilization of unbounded derivations on C*-algebras

    We first show that a derivation studied recently by E. Christensen has a set of analytic elements which is strong operator topology-dense in the algebra of bounded operators on a Hilbert space, which strengthens a result of Christensen. Our second main result shows that this derivation has kernel stabilization, that is, no elements have derivative eventually equal to 0 unless their first derivative is 0. As applications, we (1) show that a family of derivations on C*-algebras studied by Bratteli and Robinson has kernel stabilization, and (2) we provide sufficient conditions for when two operators which satisfy the Heisenberg Commutation Relation must both be unbounded.


    Read more

    Categories: Faculty-Staff

  • Simulation Based Inquiry Oriented Linear Algebra

    CO-I Ashish Amresh

    Games that teach introductory concepts in linear algebra such as vectors, span and dependence are created to be used by instructors in an undergraduate class.
    Read more

    Tags: games mathematics algebra

    Categories: Faculty-Staff

1-8 of 8 results